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Abstract. We investigate the stability condition of large bipolarons confined in a parabolic potential con-
taining certain parameters and a uniform magnetic field. The variational wave function is constructed as a
product form of electronic parts, consisting of center of mass and internal motion, and a part of coherent
phonons generated by Lee-Low-Pines transformation from the vacuum. An analytical expression for the
bipolaron energy is found, from which the ground and excited-state energies are obtained numerically by
minimization procedure. The bipolaron stability region is determined by comparing the bipolaron energy
with those of two separate polarons, which is already calculated within the same approximation. It is shown
that the results obtained for the ground state energy of bipolarons reduce to the existing works in zero
magnetic field. In the presence of a magnetic field, the stability of bipolarons is examined, for three types of
low-dimensional system, as function of certain parameters, such as the magnetic-field, the electron-phonon
coupling constant, Coulomb repulsion and the confinement strength. Numerical solutions for the energy
levels of the ground and first excited states are examined as functions of the same parameters.

PACS. 73.21.-b Electron states and collective excitations in multilayers, quantum wells, mesoscopic,
and nanoscale systems – 63.20.Kr Phonon-electron and phonon-phonon interactions – 71.38.-k Polarons
and electron-phonon interactions

1 Introduction

The large bipolaron concept as usually understood arises
from the consideration of the interaction of two electrons
with the longitudinal optical phonon field of ionic lattices
and their Coulomb repulsion. One of two electrons dis-
torts and displaces its surrounding ions, establishing a
polarization field in the crystal which in turn acts on the
second electron. In the language of field theory these ef-
fects arise from the emission and reabsorption of virtual
quanta of longitudinal optical phonon field of the mate-
rial. Under certain conditions, the phonon mediated inter-
action may be strong enough to overcome the Coulomb
repulsion between the two electrons, accordingly they end
up in a bound state. A possibility of pairing of two elec-
trons, or rather two large polarons, was first considered
by Pekar (1951) [1] and a calculation of the large bipo-
laron binding energy was first achieved by Vinetskii and
Gitterman(1957) [2].

The large bipolaron (polaron) can be dealt with thor-
oughly within the framework of Fröhlich approximation,
in which the electron-phonon interaction is developed by
treating the dielectric medium as a macroscopic contin-
uum. This medium is represented by the static and the
high frequency dielectric constants, ε0 and ε∞, respec-
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tively. In case of the bipolaron problem, the parameter
η = ε∞/ε0 plays a decisive role in the stability of the
bipolaron.

The criterion for which a stable bipolaron forms can be
derived by the requirement that the energy of two interact-
ing polarons be lower than twice that of a single polaron.
Apart from the other parameters, stable bipolarons exist
in three dimension (3D) only for large values of electron-
phonon coupling strength, which takes place in the in-
termediate and strong coupling regions. A calculation for
the bipolaron binding energy by using a variational wave
function in a general form yields that the stability is ful-
filled in 3D when α > 7.2 [3]. Later, this value was found
as α > 6.8 [4–6]. It is also shown that this is reduced to
α > 2.9 for 2D systems [7] and α > 0.9 for 1D systems [8],
since the effects of the electron-phonon interaction are en-
hanced as the dimension is lowered. Ever since the discov-
ery of cuprate superconductors, the bipolaron problem in
2D formulation has become a common interest in connec-
tion with the high-temperature superconductivity, where
it was thought that the pairing mechanism in real space
can be realized by means of the bipolaron formation [9].

A large number of papers have been devoted to
the investigation of the bipolaron stability in two and
three dimensions; of these works, variational approaches
[6,10–13], Feynman path integral techniques [5,14,15],
and Bogolubov-Tyablikov adiabatic theory [16,17] are
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notable and give conclusively a stable bipolaron, where
various results are found for the critical values of α and η.

In the presence of a magnetic field the bipolaron prob-
lem becomes more interesting due to the fact that charac-
teristics of the bipolaron now are enhanced; indeed, it was
shown that 3D bipolarons are equivalent to 1D bipolarons
in a strong magnetic field [18]. Furthermore, it is possi-
ble to make a connection with cyclotron resonance ex-
periments. There exist various works on large bipolarons
in a magnetic field, investigated by a variational proce-
dure [19–21] and on the basis of Feynman’s path-integral
approach [22,23], where the Jensen-Feynman inequality is
used, whose range of validity is discussed conclusively in
reference [24]. An overview of bipolaron research can be
found in the proceedings of Pushchino Workshop [25] and
in a book by Alexandrov and Mott [26], and furthermore,
a detailed review of the subject is recently presented by
Devreese(1996) [27].

Apart from a magnetic field it is also possible to en-
hance the characteristics of bipolarons through confining
potentials. The presence of such a potential can limit the
motion of the bipolarons in all directions and furthermore
makes their formation more favorable. Recent technolog-
ical advances in the fabrication of nanostructures have
created low dimensional semiconductors such as quantum
wells (QW)- quantum well wires (QWW) and quantum
dots (QD) [28], therefore it is expected that theoretical
interest in the bipolaron problem should arise in such sys-
tems.

In a recent paper [29], the stability of a strong-
coupling singlet bipolaron is studied in a purely 2D and
3D parabolic QD’s using the Landau-Pekar variational
method, where it appears that the confining potential
of the QD affects the stability of the bipolaron. More
recently, a theory of bipolaron states in QD [30] and
QWW [31] is developed applying the Feynman variational
principle. For both cases, the number of phonons in the
bipolaron cloud and the bipolaron radius are studied as
functions of the confinement length.

In the present paper, we shall consider the bipolaron
problem in a magnetic field and a parabolic confining po-
tential with certain parameters, from which we shall ob-
tain QD, QW and QWW as separate cases by changing
the parameters accordingly. In this investigation we shall
use a variational technique, which is recently developed
for a single polaron and impurity polaron in the same po-
tential and the magnetic field [32].

The layout of the present work is as follows. In Sec-
tion 2, the formulation of the problem is presented in the
framework of the variational approach parallel to the sin-
gle polaron study in reference [32]. The ground- and first-
excited states of the magnetobipolaron are obtained by
minimization procedures as three different physical cases
in Section 3. Various properties of the magnetobipolarons
are analyzed graphically in Section 4 and the paper ends
with a conclusion.

2 Theory

We consider a system of two electrons, which are inter-
acting with LO phonons and subjected to a confining QD
potential. In the presence of a uniform magnetic field along
the z-direction, the Hamiltonian describing the considered
system, within the Fröhlich approach, is written as

H = HE +
∑
q

~ω0b
†
qbq +

∑
=1,2

∑
q

(
Vqbqeiq·r + h.c.

)
, (1)

where

HE =
1

2µ

∑
=1,2

[
p+

e

c
A (r)

]2
+

1
2
µ
∑
=1,2

(
ω2
⊥r2
⊥+ω

2
‖z

2


)
+

e2

ε∞ |r1 − r2|
, (2)

is the electronic part, and

|Vq|2 = (~ω0)2

(
4πα
V

)
r0

q2
⊥ + q2

z

, (3)

is the electron-phonon interaction amplitude. In equa-
tion (1), b†q(bq) is the creation (annihilation) operator of
an optical phonon with a wave vector q = (q⊥, qz) and en-
ergy ~ω0, and p and r≡(r⊥, z) denote the momentum
and position operators of the electrons, respectively. α and
r0 are the electron-phonon coupling constant and polaron
radius, respectively. In equation (2), the second term is
a generic confining potential from which low dimensional
systems can be obtained through the appropriate choice
of parameters ω⊥ and ω‖, and the last term represents the
Coulomb repulsion between two electrons.

If we choose the symmetrical Coulomb gauge for vec-
tor potential A = B(−y, x, 0)/2 and adopt the center of
mass position operator R = (r1 + r2) /2 and the relative
position operator r = r1−r2, with their canonically conju-
gate momenta P = p1 + p2 and p = p1−p2 respectively,
then the Hamiltonian becomes

H = − ~
2

4µ
∇2

R + µω2R2
⊥ + µω2

‖Z
2 +

ωc
2
LZ

−~
2

µ
∇2

r +
1
4
µω2r2

⊥ +
1
4
µω2
‖z

2 +
ωc
2
Lz +

e2

ε∞r
(4)

+
∑
q

~ω0b
†
qbq +

∑
q

2 cos
(q · r

2

) (
Vqbqeiq·R + h.c.

)
,

where ωc = eB/µc is the cyclotron frequency, and LZ(z)

is the Z(z) component of the angular momentum. The
electronic part of equation (4) can be written as a sum of
the center of mass and internal motion

HE = HR (2µ, ω) +Hr (µ/2, ω) ,

where Hr is given by

Hr = Hr⊥
2D (µ/2, ω) +

ωc
2
Lz +Hz

1D

(
µ/2, ω‖

)
+

e2

ε∞r
·
(5)
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This is the sum of Hamiltonians for an isotropic 2D har-
monic oscillator in the lateral plane with the mass µ/2 and
frequency ω =

(
(ωc/2)2 + ω2

⊥
)1/2, and 1D oscillator along

the z-axis with the mass µ/2 and frequency ω‖, plus terms
of LZ and electron-electron interaction. A similar expres-
sion can be written for the center of mass motion with the
mass 2µ, but without the Coulomb repulsion.

The trial wave function in the variational approxima-
tion we choose is made up from direct products of elec-
tronic and phonon contributions∣∣∣Ψκ;κ′

〉
= |n1,∓m1, `1〉 ⊗ |n2,∓m2, `2〉 ⊗D (f) |0〉ph , (6)

where the first two products represent the states of the
internal motion with quantum numbers κ ≡ (n1,∓m1, `1)
and those of center of mass with κ

′ ≡ (n2,∓m2, `2) , re-
spectively. In coordinate representation the states of the
internal motion are given by〈

r
∣∣∣ κ〉 = ψn1,∓m1 (r⊥)ψ`1 (z)

= Nκ (γ1, β1) e−γ
2
1r2
⊥/2 (x∓ iy)m1 Lm1

n1

(
γ2

1r2
⊥
)

×e−β
2
1z

2/2H`1 (β1z) , (7)

where the functions Lm1
n1

and H`1 are associated Laguerre
polynomials and Hermite polynomials, respectively. Nκ
is the normalization constant. A suitable choice of the
trial wave function for the center of mass motion, which
is to be consistent with equations (9) and (5) of the pre-
vious works [32], respectively, has a similar structure of
equation (7) with new variational parameters γ1 and β1.
In equation (6), D(f) is the well-known Lee-Low-Pines
(LLP) transformation , by which coherent boson states
are generated through the application on the zero phonon
states. This treatment is in accordance with the approach
considered for a single polaron in reference [32], whose re-
sult for the energy will be used in the calculation of the
bipolaron stability.

With this choice of wave functions, the expectation
value of the bipolaron Hamiltonian becomes

EBP(κ;κ′) =
〈
Ψκ;κ′

∣∣∣H ∣∣∣Ψκ;κ′

〉
= E0

(κ;κ′) +EI(κ;κ′), (8)

where E0

(κ;κ′) represents the electronic part and is given

by

E0

(κ;κ′) =∑
=1,2

[(
~2

2µ
γ2
 +

1
2
µω

2 1
γ2


)
(2n +m + 1)∓m

~ωc
2

+
(
~2

2µ
β2
 +

1
2
µω

2
‖

1
β2


)(
` +

1
2

)]
+
〈
e2

ε∞r

〉
κ

· (9)

Here, µ1 = µ/2 is the reduced mass and µ2 = 2µ is the
total mass of the system. EI(κ;κ′) in equation (8) represents

the contribution due to the phonon field and the electron-
phonon term and is given by

EI(κ;κ′) =∑
q

[
~ω0 |fq|2 + 2Vqfqσκ (q, γ1, β1)Σκ′ (q, γ2, β2)

+2V ∗q f
∗
qσ
∗
κ (q, γ1, β1)Σ∗

κ′
(q, γ2, β2)

]
, (10)

with

σκ (q, γ1, β1) =
〈
n1,∓m1, `1 | cos

(q · r
2

)
| n1,∓m1, `1

〉
(11a)

and

Σκ′ (q, γ2, β2) =
〈
n2,∓m2, ` | eiq·R | n2,∓m2, `2

〉
.

(11b)

By making use of the wave functions for the internal mo-
tion, one can easily calculate equation (11a), then finds
the following implicit expression

σκ (q, γ1, β1) = ρn1,m1 (q⊥/2, γ1) ρ` (qz/2, β1) , (12)

where each term on the right hand side is given, respec-
tively, by

ρn1m1 (q⊥, γ1) =

1
n1!m1!

∞∑
p=0

(m1 + p)!
[(p)!]2

(
− q2

⊥
16γ2

1

)p
∆n1m1 (p) (13a)

and

ρ`1 (qz/2, β1) = e−q
2
z/16β2

1L`1

(
q2
z

8β2
1

)
, (13b)

in which ∆n1m1(p) can be expressed in terms of the hy-
pergeometric functions and its full description together
with various values can be found in reference [32]. Σκ′
can be expressed by the same procedure as done for
equations (12, 13a) and (13b) with the quantum num-
bers n2,∓m2, `2.

The last term in equation (9) which is the well-known
average value of the Coulomb correlation can be written
by means of equation (6) as

〈
e2

ε∞r

〉
κ

=
e2

ε∞

1
2π

∫
d3k
k2

ρn1m1 (k⊥, γ1) ρ`1 (kz , β1) .

(14)

In the absence of the electron-phonon and electron-
electron interactions if we minimize the resulting energy
with respect to γ and β, then we obtain an expression of
the energy for two non-interacting electrons in a magnetic
field and a confining potential with γ2

 = µω/~ and β2
 =

µω‖/~, ( = 1, 2). The corresponding energy consists of
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two parts: one is for the center-of-mass and the other for
the internal motion, which are very much alike, except for
quantum numbers

E
BP

[κ;κ′ ]
∣∣∣
α=0

=∑
=1,2

[
(2n +m + 1)ω ∓m

ωc
2

+
(
` +

1
2

)
ω‖

]
. (15)

In the above expression and hereafter, the energy and
other parameters are expressed in terms of the LO-phonon
frequency ω0, accordingly the dimensionless confinement
frequencies ω⊥(‖) are directly related to the dimension-
less confinement lengths u⊥(z) = `⊥(z)/r0 =

√
2/ω⊥(‖).

Equation (15) defines the well-known Fock-Darwin en-
ergy levels [33] for two electrons in a confining poten-
tial and a magnetic field. It should be noted that these
are reduced to the Landau levels E

BP

[κ;κ′ ]
∣∣∣
α=0,ω⊥(‖))=0

=∑
=1,2

[n + (m ∓m)/2 + 1/2]ωc, in the absence of the

confining potential.
Minimization of E

BP

(κ;κ′) with respect to f∗q yields

fq = −
2V ∗q
~ω0

σ∗κ (q, γ1, β1)Σ∗
κ′

(q, γ2, β2) (16)

and after substituting fq into equation (10), E
I

(κ;κ′) be-
comes

E
I

(κ;κ′) =

− 4
(~ω0)2

∑
q

|Vq|2 |σκ (q, γ1, β1)Σκ′ (q, γ2, β2)|2 . (17)

With the change of variables q⊥/
√

2γ1 = x and
qz/2
√

2β1 = y in equation (17) and similarly k⊥/
√

2γ1 =
x and kz/

√
2β1 = y in equation (14), the dimensionless

bipolaron energy simplifies to the following form

E
BP

(κ;κ′) =
∑
=1,2

[(
1
γ2


+
1
4
ω2γ2



)
(2n +m + 1)

∓m
~ωc
2

+

(
1

β
2



+
1
4
ω2
‖β

2



)
(` +

1
2

)

]

+
2
√

2
π

e2

ε∞~ω0

(mω0

~

)1/2 β1

γ2
1

I(1)
κ

(
Ω
)

−16
π
α
β1

γ2
1

I
(2)

κκ′
(
Ω; γ2, β2

)
, (18)

where Ω is given by Ω
2

= β
2

1/γ
2
1 and the relevant integrals

are defined as

I(1)
κ

(
Ω
)

=
∫ ∞

0

xdxρn1m1

(
x2/2

)
×
∫ ∞

0

dy
e−y

2/2

Ω
2
x2 + y2

L`1
(
y2
)

(19)

and

I
(2)

κ;κ′
(
Ω; γ2, β2

)
=∫ ∞

0

xdx
∣∣∣ρn1m1

(
x2/2

)
|2 | × ρn2m2

(
γ2

2x
2/2γ2

1

)∣∣∣2
×
∫ ∞

0

dy
e−y

2
�

1+β
2
2/β

2
1

�

Ω
2
x2 + y2

L2
`1

(
y2
)
L2
`2

(
β

2

2y
2/β

2

1

)
. (20)

It should be noted that in equation (18) the coupling con-
stant α, the amplitude of the Coulomb repulsion U =
e2 (µω0/~)1/2

/ε∞~ω0 and the material parameter η =
ε∞/ε0 are connected by the relation U =

√
2α/(1− η).

Equation (18) is our fundamental result, from which
we obtain the ground- and excited-state energies of bipo-
laron according to the values of Ω. It should be pointed
out that the values of Ω play a decisive role in the deter-
mination of the features of low dimensional systems. For
example, under certain conditions which will be discussed
in the next section, the case Ω

2
= 1

(
ω = ω‖

)
defines

a QD which represents a 3D confinement, that is, quasi-
zero dimensional motion, embedded in a three dimensional
material, whereas Ω

2
> 1

(
ω > ω‖

)
and Ω

2
< 1

(
ω < ω‖

)
correspond to a QWW and QW which are 2D confine-
ment (quasi-one dimensional motion) and 1D confinement
(quasi-two dimensional motion), respectively, where all
confinements are embedded in a 3D material.

3 The ground and first excited states

3.1 Ground state

The ground-state energy for the large bipolaron can be
easily obtained from equation (18) and is given by

E
BP

(0;0) =
∑
=1,2

[(
1
γ2


+
1
4
ω2γ2



)
+

1
2

(
1

β
2



+
1
4
ω2
‖β

2



)]

+
2
√

2
π

U
β1

γ2
1

I
(1)
0

(
Ω
)
− 16

π
α
β1

γ2
1

I
(2)
0,0

(
Ω; γ2, β2

)
,

(21)

where the relevant integrals are calculated in detail ac-
cording to three different cases Ω in reference [32], and
(0; 0) represents the state with quantum numbers n = 0,
m = 0 and ` = 0 . Hence, the energy expression in com-
pact form becomes

E
BP

(0;0) =
∑
=1,2

[(
1
γ2


+
1
4
ω2γ2



)
+

1
2

(
1

β
2



+
1
4
ω2
‖β

2



)]

− 2√
π
α
β1

γ2
1

1

Ω
2

 4F0
(
D

2
)

(
1 + β

2

2/β
2

1

)1/2
−
√

2
1− ηF

0
(
Ω

2
) ,
(22)
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where

F0(χ2) =



1
2

χ√
χ2 − 1

ln
χ+

√
χ2 − 1

χ−
√
χ2 − 1

χ2 > 1

1 χ2 = 1

χ√
1− χ2

arctan

√
1− χ2

χ
χ2 < 1

(23)

with

D
2

= Ω
2 1 + β

2

2/β
2

1

1 + γ2
2/γ

2
1

· (24)

It should be mentioned that for the case Ω
2

= 1, there
are three possibilities for D

2
, which are D

2
> 1, D

2
<

1, D
2

= 1; however, only the last one is acceptable for
optimal results from the variational calculations to obtain
a bound bipolaron in a box-type confinement. Likewise,
for the case Ω

2
< 1(> 1) there are again three possible

values for D
2

as mentioned for the box case, and only
D

2
< 1(> 1) now gives the optimal results for the QWW

(QW). The other limits can also exist mathematically, but
are not acceptable physically.

In order to have a stable bipolaron it is necessary
that the ground-state energy of two interacting polarons
should be lower than twice that of a single polaron; this
defines the bipolaron stability region, which is expressed
as W

(
η, α;ω, ω‖, ωc

)
= 2E

P

(0) − E
BP

(0;0) ≥ 0 where E
P

(0) is
the single polaron ground-state energy, calculated within
the same framework as for the bipolaron system and can
be readily available from reference [32].

3.1.1 Ω
2

= D
2

= 1

This condition allows us to consider parabolic potentials
in the lateral plane and the z-direction so that we are free
to adjust the relevant parameters to restrict the motion of
electrons in a box. Therefore, this case defines a box-type
confinement and represents a quantum dot embedded in a
three-dimensional material. It corresponds to taking ω =
ω‖ in equation (22), since β

2

1 = γ2
1 = β

2
, β

2

2 = γ2
2 = B

2

and F0(1) = 1, so one obtains the result for the bipolaron
ground-state energy

E
BP

(0;0) =
3
2

(
1

β
2 +

1

B
2

)
+

1
4

(
ω2 +

1
2
ω2
‖

)(
β

2
+B

2
)

+2

√
2
π

α

1− η
1
β
− 8√

π
α

1√
β

2
+B

2
· (25)

Before starting to give a detailed discussion of equa-
tion (25), it is useful firstly to analyze it for simpler and
known problems. For example, when we take ωc = ω⊥ =

ω‖ = 0 in the last equation it gives a simpler expression
from which one can obtain exactly the same result by using
the oscillator wave functions proposed by Verbist et al. [6]
for both relative and center-of-mass motions, just by sub-
stituting 2/β

2
with ~Ω/µω0 and 2/B

2
with ~Ω1/µω0; like-

wise, by substituting 1/
√

2β with γ and
√

2/B with β in

reference [10] , and 1/β with b and 1/
√

1 +B
2
/β

2
with λ

in reference [11], one obtains equation (22) of Bassani et al.
and equation (10) of Luczak et al., respectively, whose re-
sults are generally accepted fundamental for variational
approach with Gaussian-Gaussian type trial functions.

3.1.2 Ω
2
> 1

The condition Ω
2
> 1 implies D2 > 1, as mentioned be-

fore, which require β
2

1 > γ2
1 and β

2

1 + β
2

2 > γ2
1 + γ2

2. This
condition allows us to keep the confining potential only in
the lateral plane and to remove that of its perpendicular
part, i.e. ω‖ = 0, so that electrons are free to move along
the z-axis. Therefore, this case defines a 2D confinement,
quasi-one dimensional motion and represents a QWW em-
bedded in a 3D material. If one substitutes F0(χ2 > 1)
into equation (22) one obtains the bipolaron ground state
energy as

E
BP

(0;0) =
∑
=1,2

(
1
γ2


+
1
4
ω2γ2

 +
1
2

1

β
2



+
1
8
ω2
‖β

2



)

− α√
π

[
4

(V − Y )1/2
ln

(√
V +

√
V − Y√

V −
√
V − Y

)

−
√

2
1− η

1√
Z

ln

(
β1 +

√
Z

β1 −
√
Z

)]
, (26)

where V = β
2

1 + β
2

2, Y = γ2
1 + γ2

2 and Z = β
2

1 − γ2
1.

This energy is minimized numerically to determine
optimal values of the parameters γ and β ( = 1, 2).
The single polaron energy in W is obtained by the same
method as in reference [32]. The change of W with respect
to η, with and without a magnetic field can be obtained
in a similar way as in the previous one. The results show
that the overall picture is the same as those in the previous
case.

3.1.3 Ω
2
< 1

The characteristic condition of this case is D
2
< 1 as well

as β
2

1 < γ2
1 and β

2

1 + β
2

2 < γ2
1 + γ2

2. Here, it is possible to
take ω⊥ = 0, that is, a confining potential along the z-
axis keeps the electrons moving in the lateral plane freely.
Therefore, this case defines a slab-type confinement (or
1D confinement) and quasi-two dimensional motion, and
represents a QW embedded in 3D material. If one sub-
stitutes F0(χ2 < 1) into equation (22), one obtains the
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bipolaron ground-state energy as

E
BP

(0;0) =
∑
=1,2

(
1
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4
ω2γ2
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· (27)

This expression, together with the single polaron energy
of reference [32], is minimized numerically to determine
optimal values of the parameters γ and β ( = 1, 2).

3.2 Excited states

The excited-state energies for the large magnetobipo-
laron in low dimensional systems can be easily obtained
from equation (18) by choosing certain quantum numbers
and calculating the related integrals I(1)

κ and I
(2)

κ,κ′
, and

then applying the variational techniques to the resulting
equation. Such a set of quantum numbers we choose is
(0∓ 10; 0), (0;0∓ 10) and (001; 0) and for these states the
interaction parts of the bipolaron energy of equation (18)
become

E
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with

see equations (31, 32) above

where ∆ = 1 + β
2

2/β
2

1, Γ = 1 + γ2
2/γ

2
1 and F0(χ2) is given

by equation (23). Obtaining the remaining parts of the
bipolaron energy is trivial, as such giving the values of
related set of quantum numbers in equation (18). As we
mentioned in the formulation of the ground state part,
there are again three possibilities depending on the choice
of Ω and D, yielding the formation of QW’s,QWW’s and
QD’s.

One can easily extend what we achieved for the ground
state to the excited states, i.e., the dependence of W on
the confinement lengths (u⊥, uz), magnetic field (ωc), η
and α, just by optimizing the energy equation (18) with
equations (19–20). In the present work, regarding for ex-
cited states, we will focus only on QD’s embedded in a 3D
material, which is equivalent to take Ω

2
= D

2
= 1.

4 Results and discussions

We can now examine closely each case we have considered
in the previous section. Since analytical minimization of
E
BP

(0;0) is not possible, the optimal values of parameters
β, B, η will be determined by numerical treatment and
throughout the discussion for QD we set u⊥ = uz = u
in order to facilitate the calculations. With appropriate
choice for the values of α, η and Ω, equation (25), together
with equation (24) of reference [32], have been minimized
with respect to β and B in such a way that the condition
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(a)

(b)

Fig. 1. Dependence of the binding energy W of the bipolaron
in the ground-state on cyclotron frequency (a) at η = 0.01 and
(b) at η = 0.02; dashed line- u = ∞; thin line-u = 2; thick
line-u = 1.

for the formation of bipolaron, i.e. W ≥ 0, is satisfied.
In Figure 1, we analyze dependencies of W on magnetic
field ωc and confinement length u graphically, where we
plot W with respect to ωc for fixed values of η and u at
α = 4. The dashed lines in Figure 1a and 1b show the
effect of magnetic field without any confinement and are
agree with references [6,10] at ωc = 0. From Figure 1b one
can also observe that both magnetic field and confinement
enhance the formation of a bipolaron up to a certain value
of the magnetic field when η takes larger values. Beyond
this value of the magnetic field the binding energy de-
creases (Fig. 1b) compared to that of the smaller values
of η (Fig. 1a). This effect can be clearly seen on the plot
of the binding energy with respect to η for different val-
ues of magnetic field at a constant confinement length and
α = 4 (Fig. 2). The thin line in Figure 2 is the result in
the absence of a magnetic field and gives the known crit-
ical value of η (ηc = 0.079) just as found in reference [6],
whereas the other lines show the pronounced effect of the

Fig. 2. Dependence of the binding energy W of the bipolaron
in the ground-state on η, at a fixed confinement length u = 2;
thin line-ωc = 0; thick line-ωc = 5; bold line-ωc = 10.

Fig. 3. The binding energy W of the bipolaron in the ground-
state as a function of the confinement length u for a QD; dashed
lines-ωc = 0; solid lines-ωc = 5.

magnetic field on W , up to a certain value of η, beyond
which W remains under the result for ωc = 0 (thin line),
although the formation of a bipolaron is still possible. It
should also be noted that the critical value of η decreases
with increasing magnetic field, for instance ηc is about
0.054 at ωc = 10.

To further the effects in Figure 1, we plot the binding
energy W with respect to the confinement parameter in
Figure 3, to describe the effects of the coupling constant
α, the material parameter η and the magnetic field ωc on
W . There it appears that the binding energy W increases
with increasing confinement, which is realized with the de-
creasing confinement length u. The curves show a general
trend that the binding energy increases with increasing α
and ωc, and is very sensitive on the values of η, which
are agree with the other works. When η goes to smaller
values, the confinement effect on the binding energy W
is more pronounced and the stability of the bipolaron be-
comes more favorable. It should be noted that these curves
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are meaningful only for the values above u = 1, since this
is the region where the polaron radius is at the same order
of the confinement length.

Before analyzing excited states, it may be wor-
thy of considering the above mentioned excited states
with and without electron-phonon interaction, equation
(15). Firstly, in the absence of the electron-phonon and
electron-electron interactions, one can obtain the Fock-
Darwin energy levels for two non-interacting electrons,
such as the ground-state energy E

BP

[0;0]

∣∣∣
α=0

= 2ω +

ω• and the first excited state energiesE
BP

[0∓10;0]

∣∣∣
α=0

=

E
BP

[0;0∓10]

∣∣∣
α=0

= 3ω + ω• ∓ ωc/2 and E
BP

[001;0]

∣∣∣
α=0

=
2ω + 2ω•; where for convenience ω⊥ = ω‖ = ω• is taken,
and ω = (ω2

• + ω2
c/4)1/2 represents the hybrid frequency.

Secondly, when we switch on the electron-phonon and
electron-electron interactions, these levels will be shifted
down and split, respectively. In Figure 4a we plot the
bipolaron energy as a function of ωc in the absence of
a confining potential, where the labels of energy lev-
els are put according to an admixture set of quantum
numbers of center-of-mass and relative motions, such as
(n1,m1, `1;n2,m2, `2). It is evident that center-of-mass
and relative motions are separated by the electron-phonon
interaction, which are further split for m1 = ±1 and
m2 = ±1 by the magnetic field. It should be noted that
the states with m1 = −1 and m2 = −1 go asymptot-
ically parallel to the ground state [0; 0] and those with
m1 = +1 and m2 = +1 parallel to the first excited states.
Figure 4b illustrates the bipolaron energy as a function of
ωc in the presence of a confining potential as for the case
of QD. When the electron-phonon and electron-electron
interactions are neglected, we obtain the ground state en-
ergy of an isotropic oscillator specified as [0; 0] and the
first excited states as [001; 0], [010; 0], [0; 010],[0− 10; 0]
and [0; 0− 10] which are split by the magnetic field. If the
electron-phonon interaction is now switch on, the center
of mass and relative motions are separated, and we obtain
the same asymptotic behavior as in Figure 4a for high
magnetic fields.

Similar to the spatial confinement arising from the con-
fining potential, it is also possible to remark a confinement
due to magnetic fields, which affects in the lateral plane
when the field is along the z-direction. In regard with
the competition between the spatial and magnetic con-
finement we can observe that, when the spatial confine-
ment is much less than the magnetic confinement length,
the energy spectrum approaches smoothly that of a free
particle, when it is much greater, then the Landau levels
are recovered [34]. Furthermore, if there exists an addi-
tional effect such as electron-phonon interaction, then the
energy levels are shifted down and split to produce relaxed
excited states (RES) [35].

The change of the binding energy of bipolarons, for
η = 0.01 and α = 4, as a function of confining parameters
is displayed in Figure 5a, in the absence of a magnetic
field. As expected, the confinement becomes more effec-
tive when the dimension is further restricted. The curves

(a)

(b)

Fig. 4. Cyclotron frequency dependence of the bipolaron en-
ergies in a QD (a) at u = ∞ and (b) u = 2. The solid and
dashed lines represent the unperturbed [n1∓m1`1;n2∓m2`2]
and perturbed (n1 ∓ m1`1;n2 ∓ m2`2) energy levels, respec-
tively.

in Figure 5a, from top to bottom, describe a QD system
with quasi-zero-dimensional motion in 3D confinement, a
QWW with quasi-one-dimensional motion in 2D confine-
ment and a QW with quasi-two dimensional motion in
1D confinement. It should be noted that all these three
cases reach asymptotically to the energy of a bipolaron
without spatial and magnetic confinements (dashed line
in the figure), which is depicted by the work of Bassani
et al. [10]. If we keep α = 4 and ωc = 0, but increase η
to a higher value, for instance, to 0.05, then the stability
region is reversed as seen in Figure 5b. This is due to the
fact that the least adversely affected system is the least
confined one, which is the QW. Here again, the dashed
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Fig. 5. Dependence of the binding energy W of the bipolaron
in the ground-state on confinement lengths (a) at η = 0.01 and
(b) at η = 0.05.

line is the binding energy of a free bipolaron [10]. The
other important point is that, in the region u, u⊥, uz < 1,
the curves in Figure 5a turn down to zero after maxima,
whereas those in Figure 5b decrease to zero in the same
region, which is not shown in our plots since this region
is not meaningful due to the large polaron concept. How-
ever, the same behaviour has been obtained by applying
the Feynman variational principle with path integrals [30].

In Figure 6 we plot the curves for the three systems
showing the variation of the Coulomb repulsion parame-
ter normalized by α, U/

√
2α, as a function of α without

(a) and with (b) a magnetic field. The region below each
curve describes the stability region of a bipolaron. Note
that the existence of a magnetic field brings the exchange
of the curves of QW and QWW. This is because of the
introduction of an extra term into the Hamiltonian aris-

(a)

(b)

Fig. 6. Stability region for bipolaron formation in QD, QW
and QWW type structures (a) at ωc = 0 and (b) at ωc = 5,
with a fixed confinement length u = 2

ing from the magnetic confinement in the lateral plane
and accordingly the QW case, in a sense, becomes a 3D-
confinement in quasi-zero dimensional motion similar to a
QD.

It is an interesting fact that our results are reduced
to those of references [6,10,11] found for the ground-state
energy, when one removes the magnetic field and the con-
finement. The approaches of those references use Gaussian
type trial wavefunctions for both center-of-mass and the
relative motions, and reproduce the leading term in the
strong coupling expansion. From the point of view of judg-
ing the validity region of our and those works cited above,
it is important to realize that polaron and bipolaron ener-
gies obtained in these approaches are proportional to α2,
which do not allow one to get an optimum value for α.
Therefore, it is a well-known and common fact that the
only drawback in these approaches is the failure to predict
a critical value for α. As seen from Figure 3, in the absence
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of a magnetic field, when one increases u to its larger val-
ues, the bipolaron binding energy does not change with
u and eventually becomes independent of u, as expected.
This is essentially bulk limit, where the binding energies
are proportional to α2, arising from a strong coupling ap-
proach where it is well-known that there is no binding
below α < 6.8 [4–6] for bulk materials. There is, however,
a part of confinement region beyond which the bipolaron
binding energy reach to its asymptotic value; it is about
up to u ∼ 4 (Fig. 6). In fact, this region depends sensi-
tively on the choice of the parameters η, α and ωc, and
it broadens when η decreases, and α and ωc increases as
mentioned before. It is shown that the reduction of dimen-
sionality of the system to two and one dimensions yields
an enlargement in the bipolaron stability region [7,8]. In
order to have a stable bipolaron, it is found that the mini-
mum value of α should be 2.9 [7] in 2D systems and 0.9 [8]
in 1D systems. In particular, Pokatilov et al. [30,31] con-
clude that the stable bipolaron states are possible even for
intermediate values of α (α ∼ 2) in nanostructures whose
size are of the same order as the polaron radius. Thus, it is
reasonable to expect that the present results obtained in
the framework of strong coupling approach are valid for
the above critical values of α which are obtained in the
path integral formalism.

5 Conclusion

In summary, we have concluded from our present investi-
gations that the complicated dependencies of the ground-
and first-excited-state energies of the magnetobipolarons
on confinement parameters arising from a magnetic field
and a confining potential apart from the material param-
eters α and η, can be examined within a variational ap-
proach as function of these parameters. We have found
that our results for the ground state of a bipolaron are
completely equivalent to those obtained in the simplest
case, i.e., in the absence of spatial and magnetic confine-
ments. Thus, the method we have used here not only gen-
eralize those of references [6,10] but also enables us to
discuss the excited-state energies of a magnetobipolaron
in a parabolic QD together with the ground-state energy.
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